

A206042


Values of the difference d for 8 primes in arithmetic progression with the minimal start sequence {11 + j*d}, j = 0 to 7.


9



1210230, 2523780, 4788210, 10527720, 12943770, 19815600, 22935780, 28348950, 28688100, 32671170, 43443330, 47330640, 51767520, 54130440, 59806740, 60625110, 63721770, 66761940, 77811300, 80892420, 87931620, 90601140, 102994500, 108310650, 115209570, 117639480
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The computations were done without any assumptions on the form of d.


LINKS

Sameen Ahmed Khan, Table of n, a(n) for n = 1..210
S. A. Khan, Primes in GeometricArithmetic Progression, arXiv preprint arXiv:1203.2083, 2012.  From N. J. A. Sloane, Sep 15 2012


EXAMPLE

d = 2523780 then {11 + j*d}, j = 0 to 7, is {11, 2523791, 5047571, 7571351, 10095131, 12618911, 15142691, 17666471} which is 8 primes in arithmetic progression.


MATHEMATICA

a = 11; t = {}; Do[If[PrimeQ[{a, a + d, a + 2*d, a + 3*d, a + 4*d, a + 5*d, a + 6*d, a + 7*d}] == {True, True, True, True, True, True, True, True},
AppendTo[t, d]], {d, 0, 200000000}]; t


CROSSREFS

Cf. A040976, A206037, A206038, A206039, A206040, A206041, A206043, A206044, A206045.
Sequence in context: A234479 A251166 A274833 * A092696 A203627 A235910
Adjacent sequences: A206039 A206040 A206041 * A206043 A206044 A206045


KEYWORD

nonn


AUTHOR

Sameen Ahmed Khan, Feb 03 2012


STATUS

approved



