The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206032 a(n) = Product_{d|n} sigma(d) where sigma = A000203. 13
 1, 3, 4, 21, 6, 144, 8, 315, 52, 324, 12, 28224, 14, 576, 576, 9765, 18, 73008, 20, 95256, 1024, 1296, 24, 25401600, 186, 1764, 2080, 225792, 30, 26873856, 32, 615195, 2304, 2916, 2304, 1302170688, 38, 3600, 3136, 128595600, 42, 84934656, 44, 762048, 584064 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Sequence is not the same as A206031(n): a(66) = 429981696, A206031(66) = 35831808. In sequence a(n) are multiplied all values of sigma(d) of all divisors d of numbers n, in sequence A206031 are  multiplied only distinct values of sigma(d) of all divisors d of numbers n. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 FORMULA a(p) = p+1, a(pq) = ((p+1)*(q+1))^2 for p, q = distinct primes. EXAMPLE For n=6 -> divisors d of 6: 1,2,3,6; corresponding values k of sigma(d): 1,3,4,12; a(6) = Product of k = 1*3*4*12 = 144. For n=66 -> divisors d of 66: 1,2,3,6,11,22,33,66; corresponding values k of sigma(d): 1,3,4,12,12,36,48,144; a(66) = Product of k = 1*3*4*12*12*36*48*144 = 429981696. MATHEMATICA Table[Times @@ DivisorSigma[1, Divisors[n]], {n, 100}] (* T. D. Noe, Feb 10 2012 *) PROG (PARI) a(n)=my(d=divisors(n)); prod(i=2, #d, sigma(d[i])) \\ Charles R Greathouse IV, Feb 19 2013 CROSSREFS Cf. A184388, A206031, A206033. Sequence in context: A324985 A069934 A206031 * A197410 A308689 A032830 Adjacent sequences:  A206029 A206030 A206031 * A206033 A206034 A206035 KEYWORD nonn AUTHOR Jaroslav Krizek, Feb 03 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 02:21 EDT 2020. Contains 337261 sequences. (Running on oeis4.)