login
A206016
Number of (n+1) X 4 0..3 arrays with the number of clockwise edge increases in every 2 X 2 subblock unequal to the number of counterclockwise edge increases.
1
4440, 87448, 1763560, 35846696, 729589784, 14856355384, 302535915752, 6161045831496, 125468206032184, 2555134697395192, 52034815042547144, 1059678915116599080, 21580155904358139832, 439475700969110430232
OFFSET
1,1
COMMENTS
Column 3 of A206021.
LINKS
FORMULA
Empirical: a(n) = 23*a(n-1) +26*a(n-2) -1839*a(n-3) +2434*a(n-4) +46051*a(n-5) -101402*a(n-6) -383385*a(n-7) +1050095*a(n-8) +824710*a(n-9) -3349720*a(n-10) +1033808*a(n-11) +1147904*a(n-12) -126976*a(n-13)
EXAMPLE
Some solutions for n=3:
..3..0..1..0....1..2..2..1....0..1..2..0....1..0..0..0....1..1..0..3
..1..0..2..2....0..0..3..0....3..3..2..1....1..2..3..1....2..3..0..1
..1..3..3..0....1..2..2..0....0..1..2..3....0..2..0..1....2..1..0..2
..0..0..2..1....3..3..1..0....2..1..0..3....3..3..3..1....0..1..3..2
CROSSREFS
Sequence in context: A128194 A184091 A309487 * A091739 A166582 A043508
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 02 2012
STATUS
approved