login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A205977 McKay-Thompson series of class 30F for the Monster group with a(0) = 1. 2
1, 1, 3, 3, 8, 8, 16, 17, 33, 35, 59, 65, 105, 116, 175, 198, 292, 330, 466, 533, 736, 842, 1132, 1304, 1725, 1985, 2576, 2974, 3809, 4394, 5555, 6415, 8030, 9261, 11475, 13234, 16264, 18734, 22843, 26296, 31849, 36613, 44058, 50602, 60551, 69452, 82669 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,3

LINKS

Table of n, a(n) for n=-1..45.

FORMULA

Expansion of eta(q^3) * eta(q^5) * eta(q^6) * eta(q^10) / (eta(q) * eta(q^2) * eta(q^15) * eta(q^30)) in powers of q.

Euler transform of period 30 sequence [ 1, 2, 0, 2, 0, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 0, 2, 1, 0, ...].

G.f. is a period 1 Fourier series which satisfies f(-1 / (30 t)) = f(t) where q = exp(2 Pi i t).

a(n) = A058617(n) unless n=0.

a(n) ~ exp(2*Pi*sqrt(2*n/15)) / (2^(3/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015

EXAMPLE

1/q + 1 + 3*q + 3*q^2 + 8*q^3 + 8*q^4 + 16*q^5 + 17*q^6 + 33*q^7 + ...

MATHEMATICA

nmax=60; CoefficientList[Series[Product[(1-x^(3*k)) * (1-x^(5*k)) * (1-x^(6*k)) * (1-x^(10*k)) / ((1-x^k) * (1-x^(2*k)) * (1-x^(15*k)) * (1-x^(30*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2015 *)

PROG

(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^5 + A) * eta(x^6 + A) * eta(x^10 + A) / (eta(x + A) * eta(x^2 + A) * eta(x^15 + A) * eta(x^30 + A)), n))}

CROSSREFS

Cf. A058617.

Sequence in context: A168283 A135291 A058617 * A238623 A138135 A113166

Adjacent sequences:  A205974 A205975 A205976 * A205978 A205979 A205980

KEYWORD

nonn

AUTHOR

Michael Somos, Feb 02 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 20:40 EST 2016. Contains 278745 sequences.