login
A205862
Numbers k for which 7 divides s(k)-s(j) for some j<k; each k occurs once for each such j; s(k) denotes the (k+1)-st Fibonacci number.
6
5, 8, 9, 9, 10, 12, 13, 13, 13, 14, 14, 15, 16, 16, 16, 17, 17, 17, 17, 18, 18, 19, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 26, 26, 26, 27, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29
OFFSET
1,1
COMMENTS
For a guide to related sequences, see A205840.
EXAMPLE
The first six terms match these differences:
s(5)-s(1) = 8-1 = 7 = 7*1
s(8)-s(6) = 34-13 = 21 = 7*3
s(9)-s(6) = 55-13 = 42 = 7*6
s(9)-s(8) = 55-34 = 21 = 7*3
s(10)-s(4) = 89-5 = 84 = 7*12
s(13)-s(6) = 377-13 = 364 =7*52
MATHEMATICA
s[n_] := s[n] = Fibonacci[n + 1]; z1 = 500; z2 = 60;
f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
Table[s[n], {n, 1, 30}]
u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
Table[u[m], {m, 1, z1}] (* A204922 *)
v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
c = 7; t = d[c] (* A205861 *)
k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
Table[k[n], {n, 1, z2}] (* A205862 *)
Table[j[n], {n, 1, z2}] (* A205863 *)
Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205864 *)
Table[(s[k[n]]-s[j[n]])/c, {n, 1, z2}] (* A205865 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 02 2012
STATUS
approved