login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+1)X6 0..2 arrays with the number of clockwise edge increases in every 2X2 subblock equal to two
1

%I #5 Mar 31 2012 12:37:07

%S 6132,122526,2531223,52826862,1105752330,23163320754,485313697782,

%T 10168541874792,213057191546673,4464093891685218,93534131935237503,

%U 1959777527759278002,41062309396848183363,860359480739604665088

%N Number of (n+1)X6 0..2 arrays with the number of clockwise edge increases in every 2X2 subblock equal to two

%C Column 5 of A205836

%H R. H. Hardin, <a href="/A205833/b205833.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 50*a(n-1) -967*a(n-2) +9966*a(n-3) -61665*a(n-4) +238876*a(n-5) -566620*a(n-6) +685346*a(n-7) +102414*a(n-8) -1329090*a(n-9) -88722*a(n-10) +6610223*a(n-11) -14921326*a(n-12) +15135867*a(n-13) -2541029*a(n-14) -13928242*a(n-15) +20602103*a(n-16) -14996664*a(n-17) +5587268*a(n-18) +151004*a(n-19) -1261871*a(n-20) +642104*a(n-21) -175642*a(n-22) +40087*a(n-23) +7838*a(n-24) -9227*a(n-25) +687*a(n-26) -82*a(n-27) -64*a(n-28) +3*a(n-29) -a(n-30)

%e Some solutions for n=4

%e ..2..2..0..0..1..0....2..0..0..1..2..0....1..1..0..2..1..0....2..0..0..1..0..1

%e ..1..0..2..1..2..1....0..2..1..0..1..0....0..2..1..0..2..1....1..2..1..2..1..2

%e ..0..1..0..2..0..2....2..0..2..1..2..1....2..0..2..1..0..2....2..1..2..1..2..0

%e ..1..2..1..0..2..0....0..1..0..2..0..2....2..1..0..2..1..0....0..2..1..0..2..1

%e ..1..0..2..1..0..1....1..2..1..0..1..0....0..2..1..0..2..1....1..0..2..1..0..2

%K nonn

%O 1,1

%A _R. H. Hardin_ Feb 01 2012