login
A205823
T(n,k) = number of (n+1) X (k+1) 0..2 arrays with the number of clockwise edge increases in every 2 X 2 subblock unequal to the number of counterclockwise edge increases.
8
24, 66, 66, 180, 216, 180, 492, 714, 714, 492, 1344, 2430, 2880, 2430, 1344, 3672, 8274, 12318, 12318, 8274, 3672, 10032, 28242, 53100, 67944, 53100, 28242, 10032, 27408, 96402, 230532, 380568, 380568, 230532, 96402, 27408, 74880, 329130, 1002240
OFFSET
1,1
COMMENTS
Table starts
....24.....66.....180......492.......1344........3672........10032
....66....216.....714.....2430.......8274.......28242........96402
...180....714....2880....12318......53100......230532......1002240
...492...2430...12318....67944.....380568.....2158482.....12281976
..1344...8274...53100...380568....2791080....20842578....156410676
..3672..28242..230532..2158482...20842578...206195280...2053746000
.10032..96402.1002240.12281976..156410676..2053746000..27196042704
.27408.329130.4361064.70022628.1177361316.20547395916.362290015758
LINKS
EXAMPLE
Some solutions for n=4, k=3:
..1..0..0..2....0..1..1..2....1..2..1..1....2..1..1..1....2..1..0..0
..1..2..1..2....0..2..0..2....1..0..0..2....2..0..2..0....0..1..2..1
..1..0..1..0....1..2..1..2....1..2..1..1....1..1..1..0....2..1..0..0
..2..0..2..2....1..0..0..2....0..2..0..2....2..0..2..2....0..1..2..1
..2..1..1..0....2..2..1..1....0..1..0..1....2..1..1..0....2..1..0..0
CROSSREFS
Column 1 is A121907(n+2).
Sequence in context: A306132 A118609 A127878 * A347314 A175153 A250799
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 01 2012
STATUS
approved