login
A205802
Expansion of e.g.f. 1/( Sum_{n>=0} (-x)^(n^2) / (n^2)! ).
7
1, 1, 2, 6, 23, 110, 630, 4200, 31990, 274051, 2608220, 27304530, 311820630, 3857738170, 51397726380, 733698365400, 11171708347799, 180738402744866, 3096027531044102, 55980949167688884, 1065496642477438890, 21293801805033731190, 445818117237227995260
OFFSET
0,3
LINKS
FORMULA
E.g.f.: 1/( Sum_{n>=0} (-x)^(n^2) / (n^2)! ).
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 6*x^3/3! + 23*x^4/4! + 110*x^5/5! + ...
where
1/A(x) = 1 - x + x^4/4! - x^9/9! + x^16/16! - x^25/25! + x^36/36! + ...
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, sqrtint(n+1), (-1)^m*x^(m^2)/(m^2)!+x*O(x^n))^(-1), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 31 2012
STATUS
approved