This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A205794 Least positive integer j such that n divides C(k)-C(j) , where k, as in A205793, is the least number for which there is such a j, and C=A002808 (composite numbers). 0
 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Is this sequence bounded?  For a guide to related sequences, see A204892. LINKS EXAMPLE 1 divides C(2)-C(1) -> k=2, j=1 2 divides C(2)-C(1) -> k=2, j=1 3 divides C(4)-C(2) -> k=4, j=2 4 divides C(3)-C(1) -> k=3, j=1 5 divides C(4)-C(1) -> k=4, j=1 6 divides C(5)-C(1) -> k=5, j=1 MATHEMATICA s = Select[Range[2, 120], ! PrimeQ[#] &] lk = Table[   NestWhile[# + 1 &, 1,    Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1,     Length[s]}] Table[NestWhile[# + 1 &, 1,   Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}] (* Peter J. C. Moses, Jan 27 2012 *) CROSSREFS Cf. A204892. Sequence in context: A111604 A101491 A276949 * A241665 A175307 A324825 Adjacent sequences:  A205791 A205792 A205793 * A205795 A205796 A205797 KEYWORD nonn AUTHOR Clark Kimberling, Feb 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 19:27 EST 2019. Contains 329987 sequences. (Running on oeis4.)