login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A205792 Least positive integer j such that n divides k^5-j^5, where k, as in A205791, is the least number for which there is such a j. 0
1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 3, 1, 1, 1, 3, 1, 1, 2, 7, 1, 1, 2, 1, 3, 2, 2, 1, 1, 1, 2, 2, 2, 3, 2, 1, 2, 1, 2, 1, 1, 3, 6, 1, 1, 1, 2, 5, 1, 1, 2, 3, 3, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 7, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

For a guide to related sequences, see A204892.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

1 divides 2^5-1^5 -> k=2, j=1

2 divides 3^5-1^5 -> k=3, j=1

3 divides 4^5-1^5 -> k=4, j=1

4 divides 4^5-2^5 -> k=4, j=2

5 divides 6^5-1^5 -> k=6, j=1

6 divides 7^5-1^5 -> k=7, j=1

MATHEMATICA

s = Table[n^4, {n, 1, 120}] ;

lk = Table[

  NestWhile[# + 1 &, 1,

   Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1,

    Length[s]}]

Table[NestWhile[# + 1 &, 1,

  Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}]

(* Peter J. C. Moses, Jan 27 2012 *)

CROSSREFS

Cf. A204892.

Sequence in context: A184957 A228349 A285718 * A249739 A249740 A071773

Adjacent sequences:  A205789 A205790 A205791 * A205793 A205794 A205795

KEYWORD

nonn

AUTHOR

Clark Kimberling, Feb 01 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 00:32 EST 2020. Contains 331313 sequences. (Running on oeis4.)