login
A205792
Least positive integer j such that n divides k^5-j^5, where k, as in A205791, is the least number for which there is such a j.
0
1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 3, 1, 1, 1, 3, 1, 1, 2, 7, 1, 1, 2, 1, 3, 2, 2, 1, 1, 1, 2, 2, 2, 3, 2, 1, 2, 1, 2, 1, 1, 3, 6, 1, 1, 1, 2, 5, 1, 1, 2, 3, 3, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 7, 3
OFFSET
1,4
COMMENTS
For a guide to related sequences, see A204892.
EXAMPLE
1 divides 2^5-1^5 -> k=2, j=1
2 divides 3^5-1^5 -> k=3, j=1
3 divides 4^5-1^5 -> k=4, j=1
4 divides 4^5-2^5 -> k=4, j=2
5 divides 6^5-1^5 -> k=6, j=1
6 divides 7^5-1^5 -> k=7, j=1
MATHEMATICA
s = Table[n^4, {n, 1, 120}] ;
lk = Table[
NestWhile[# + 1 &, 1,
Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1,
Length[s]}]
Table[NestWhile[# + 1 &, 1,
Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}]
(* Peter J. C. Moses, Jan 27 2012 *)
CROSSREFS
Cf. A204892.
Sequence in context: A340812 A228349 A285718 * A370784 A249739 A249740
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 01 2012
STATUS
approved