The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A205784 Least positive integer j such that n divides C(k)-C(j), where k, as in A205782, is the least number for which there is such a j, and C=A205824. 0
 1, 2, 1, 3, 2, 2, 3, 3, 1, 2, 4, 4, 5, 3, 2, 5, 6, 2, 7, 3, 4, 4, 8, 5, 2, 5, 2, 3, 10, 2, 1, 6, 4, 6, 3, 4, 2, 7, 5, 3, 11, 4, 3, 4, 2, 8, 8, 5, 3, 2, 6, 5, 6, 2, 4, 3, 7, 10, 7, 4, 2, 6, 4, 6, 6, 4, 2, 6, 8, 3, 9, 5, 8, 2, 7, 7, 4, 5, 2, 6, 7, 11, 10, 4, 6, 3, 10, 5, 9, 2, 5, 8, 1, 8, 7, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For a guide to related sequences, see A204892. LINKS EXAMPLE 1 divides C(2)-C(1) -> k=2, j=1 2 divides C(3)-C(2) -> k=3, j=2 3 divides C(2)-C(1) -> k=2, j=1 4 divides C(4)-C(3) -> k=4, j=3 5 divides C(3)-C(2) -> k=3, j=2 MATHEMATICA s = Table[(3 n)!/(3 n*n!*(n + 1)!), {n, 1, 120}] ; lk = Table[   NestWhile[# + 1 &, 1,    Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1,     Length[s]}] Table[NestWhile[# + 1 &, 1,   Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}] (* Peter J. C. Moses, Jan 27 2012 *) CROSSREFS Cf. A204892, A205824. Sequence in context: A023135 A191654 A327983 * A066272 A237130 A330524 Adjacent sequences:  A205781 A205782 A205783 * A205785 A205786 A205787 KEYWORD nonn AUTHOR Clark Kimberling, Feb 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 17:16 EDT 2020. Contains 337265 sequences. (Running on oeis4.)