login
A205777
G.f. satisfies: A(x) = 1/Product_{n>=1} (1 - x^n/A(x^n)^n).
1
1, 1, 1, 1, 0, 2, -2, 2, -2, 0, 1, -3, 0, -4, 2, 1, -2, 2, 2, -6, -12, 11, 6, -9, 23, -42, 103, -100, 44, 6, -105, 162, -291, 239, -115, 79, 202, -13, 452, -539, -240, -548, 183, -18, -26, 703, -1537, 2751, -609, 2091, 2162, -4328, 5156, -8972, -7340, -125, -8678
OFFSET
0,6
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^5 - 2*x^6 + 2*x^7 - 2*x^8 + x^10 +...
where
A(x) = 1/((1 - x/A(x)) * (1 - x^2/A(x^2)^2) * (1 - x^3/A(x^3)^3) *...).
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k/subst(A, x, x^k+x*O(x^n))^k))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A333181 A306216 A238451 * A053398 A065833 A245476
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 31 2012
STATUS
approved