

A205777


G.f. satisfies: A(x) = 1/Product_{n>=1} (1  x^n/A(x^n)^n).


1



1, 1, 1, 1, 0, 2, 2, 2, 2, 0, 1, 3, 0, 4, 2, 1, 2, 2, 2, 6, 12, 11, 6, 9, 23, 42, 103, 100, 44, 6, 105, 162, 291, 239, 115, 79, 202, 13, 452, 539, 240, 548, 183, 18, 26, 703, 1537, 2751, 609, 2091, 2162, 4328, 5156, 8972, 7340, 125, 8678
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..1000


EXAMPLE

G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^5  2*x^6 + 2*x^7  2*x^8 + x^10 +...
where
A(x) = 1/((1  x/A(x)) * (1  x^2/A(x^2)^2) * (1  x^3/A(x^3)^3) *...).


PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1x^k/subst(A, x, x^k+x*O(x^n))^k))); polcoeff(A, n)}


CROSSREFS

Sequence in context: A333181 A306216 A238451 * A053398 A065833 A245476
Adjacent sequences: A205774 A205775 A205776 * A205778 A205779 A205780


KEYWORD

sign


AUTHOR

Paul D. Hanna, Jan 31 2012


STATUS

approved



