The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A205684 Numbers k for which 5 divides prime(k)-prime(j) for some j
 4, 6, 7, 7, 9, 9, 10, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For a guide to related sequences, see A205558. LINKS EXAMPLE The first six terms match these differences: p(4)-p(1)=7-2=5=5*1 p(6)-p(2)=13-3=10=5*2 p(7)-p(1)=17-2=15=5*3 p(7)-p(4)=17-7=10=5*2 p(9)-p(2)=23-3=20=5*4 p(9)-p(6)=23-13=10=5*2 MATHEMATICA s[n_] := s[n] = Prime[n]; z1 = 400; z2 = 80; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}]        (* A000040 *) u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}]        (* A204890 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 5; t = d[c]                (* A205683 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}]        (* A205684 *) Table[j[n], {n, 1, z2}]        (* A205685 *) Table[s[k[n]], {n, 1, z2}]     (* A205686 *) Table[s[j[n]], {n, 1, z2}]     (* A205687 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A205688 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205689 *) CROSSREFS Cf. A205558, A204892, A204890, A205685, A205689. Sequence in context: A000703 A266148 A011275 * A006185 A169788 A300707 Adjacent sequences:  A205681 A205682 A205683 * A205685 A205686 A205687 KEYWORD nonn AUTHOR Clark Kimberling, Jan 30 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 3 04:21 EDT 2020. Contains 333195 sequences. (Running on oeis4.)