

A205651


Period 6: repeat (1, 6, 5, 4, 9, 0).


0



1, 6, 5, 4, 9, 0, 1, 6, 5, 4, 9, 0, 1, 6, 5, 4, 9, 0, 1, 6, 5, 4, 9, 0, 1, 6, 5, 4, 9, 0, 1, 6, 5, 4, 9, 0, 1, 6, 5, 4, 9, 0, 1, 6, 5, 4, 9, 0, 1, 6, 5, 4, 9, 0, 1, 6, 5, 4, 9, 0, 1, 6, 5, 4, 9, 0, 1, 6, 5, 4, 9, 0, 1, 6, 5, 4, 9, 0, 1, 6, 5, 4, 9, 0, 1, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The members of this sequence are also the units' digits of the indices of those nonzero square numbers that are also triangular.
The coefficients of x^n in the numerator of the generating function form the periodic cycle of the sequence.


LINKS

Table of n, a(n) for n=1..86.
Index to sequences with linear recurrences with constant coefficients, signature (0,0,0,0,0,1).


FORMULA

G.f. x*(1+6*x+5*x^2+4*x^3+9*x^4) / ((1x)*(1+x)*(1x+x^2)*(1+x+x^2)).
a(n) = a(n6).
a(n) = 25a(n1)a(n2)a(n3)a(n4)a(n5).
For n>0, a(n) = A010879(A001109(n)) = A010879(sqrt(A001110(n))) = mod(A001109(n),10).


EXAMPLE

The fourth nonzero square number that is also a triangular number is 204^2. As 204 has units' digit 4, then a(4)=4.


MATHEMATICA

LinearRecurrence[{0, 0, 0, 0, 0, 1}, {1, 6, 5, 4, 9, 0}, 86]


PROG

(PARI) a(n)=[0, 1, 6, 5, 4, 9][n%6+1] \\ Charles R Greathouse IV, Jan 31 2012


CROSSREFS

Cf. A010879, A001109, A001110.
Sequence in context: A200096 A220086 A094773 * A168239 A019131 A019132
Adjacent sequences: A205648 A205649 A205650 * A205652 A205653 A205654


KEYWORD

nonn,easy


AUTHOR

Ant King, Jan 31 2012


STATUS

approved



