This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A205642 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X2 subblock having the number of clockwise edge increases equal to the number of anticlockwise edge increases in its adjacent leftward and upward neighbors 9
 256, 2320, 2320, 21416, 28724, 21416, 198688, 377568, 377568, 198688, 1843744, 5079336, 8381936, 5079336, 1843744, 17111320, 69574220, 211610280, 211610280, 69574220, 17111320, 158804736, 962953968, 5747728044, 11786800328, 5747728044 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Table starts ........256.........2320...........21416.............198688 .......2320........28724..........377568............5079336 ......21416.......377568.........8381936..........211610280 .....198688......5079336.......211610280........11786800328 ....1843744.....69574220......5747728044.......727845846776 ...17111320....962953968....163624211124.....46738310925116 ..158804736..13444055224...4782966551464...3046981775525932 .1473828208.188823193784.141848199078560.199800076245538628 LINKS R. H. Hardin, Table of n, a(n) for n = 1..111 EXAMPLE Some solutions for n=4 k=3 ..3..3..1..3....1..1..3..2....1..0..3..3....2..2..1..1....3..0..1..1 ..1..0..0..3....2..3..2..0....0..0..3..0....2..0..0..2....2..0..0..0 ..1..2..1..1....3..1..3..1....3..3..3..0....2..3..2..2....2..0..2..0 ..3..2..3..2....2..3..2..3....2..2..3..0....0..3..3..2....2..0..0..0 ..0..2..0..0....1..2..3..2....0..2..3..3....3..3..0..0....2..0..3..3 CROSSREFS Sequence in context: A206109 A206102 A014713 * A205635 A205027 A207300 Adjacent sequences:  A205639 A205640 A205641 * A205643 A205644 A205645 KEYWORD nonn,tabl AUTHOR R. H. Hardin Jan 29 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .