|
|
A205581
|
|
Primes p whose smallest positive primitive root (mod p) is not squarefree.
|
|
1
|
|
|
4111, 7841, 10111, 15391, 15991, 16061, 20011, 21031, 22699, 32299, 32957, 35911, 43963, 45127, 45631, 47431, 49831, 51199, 53173, 53731, 58111, 59671, 60331, 64231, 71761, 74311, 76039, 78079, 81331, 81761, 83311, 83431, 87541, 98911, 100621, 102871, 104729
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A061325 is a proper subsequence.
A061330 is also a proper subsequence. - Michel Marcus, Feb 09 2016
Most of the terms have least primitive root 12. - Jianing Song, Aug 29 2018
|
|
LINKS
|
Jianing Song, Table of n, a(n) for n = 1..1265
Stephen D. Cohen, Tim Trudgian, On the least square-free primitive root modulo p, arXiv:1602.02440 [math.NT], 2016.
|
|
EXAMPLE
|
4111 is in the sequence since it is prime and its smallest primitive root (mod 4111) is 12.
53173 is in the sequence since it is prime and its smallest primitive root (mod 53173) is 18.
|
|
MATHEMATICA
|
Select[Prime[Range[10000]], !SquareFreeQ[PrimitiveRoot[#]]&] (* version 7.0 *)
|
|
PROG
|
(PARI) lista(nn) = forprime(p=2, nn, if (! issquarefree(lift(znprimroot(p))), print1(p, ", ")));
|
|
CROSSREFS
|
Cf. A061325, A061330.
Sequence in context: A204526 A206342 A031828 * A061325 A043677 A168462
Adjacent sequences: A205578 A205579 A205580 * A205582 A205583 A205584
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Emmanuel Vantieghem, Jan 29 2012
|
|
STATUS
|
approved
|
|
|
|