login
Triangle read by rows, related to Pascal's triangle.
4

%I #20 Oct 27 2021 15:03:13

%S 1,1,0,2,2,1,3,5,4,1,5,12,14,8,2,8,25,38,32,15,3,13,50,94,104,71,28,5,

%T 21,96,215,293,260,149,51,8,34,180,468,756,822,612,304,92,13,55,331,

%U 980,1828,2346,2136,1376,604,164,21

%N Triangle read by rows, related to Pascal's triangle.

%C Antidiagonal sums are in A052980, row sums are in A046717.

%C Similar to A091533 and to A091562. Triangle satisfying the same recurrence as A091533 and A091562, but with the initial values T(0,0) = 1, T(0,1) = 1, T(1,1) = 0.

%F T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2) for n>=2, k>=0, with initial conditions specified by first two rows. T(0,0) = 1, T(1,0) = 1, T(1,1) = 0.

%e Triangle begins :

%e 1

%e 1, 0

%e 2, 2, 1

%e 3, 5, 4, 1

%e 5, 12, 14, 8, 2

%e 8, 25, 38, 32, 15, 3

%e 13, 50, 94, 104, 71, 28, 5

%o (PARI) T(n,k) = {if(n<0, return(0)); if (n==0, if (k<0, return(0)); if (k==0, return(1))); if (n==1, if (k<0, return(0)); if (k==0, return(1)); if (k==1, return(0))); T(n-1,k)+T(n-1,k-1)+T(n-2,k)+T(n-2,k-1)+T(n-2,k-2);} \\ _Michel Marcus_, Oct 27 2021

%Y Cf. Column 0: A000045, Diagonals : A000045, A029907, A036681.

%Y Cf. A090171, A090172, A090173, A090174, A091533, A091562 (same recurrence).

%K nonn,tabl

%O 0,4

%A _Philippe Deléham_, Jan 29 2012

%E a(46), a(48) corrected by _Georg Fischer_, Oct 27 2021