login
A205571
E.g.f.: 1/(1 - x*cosh(x)).
8
1, 1, 2, 9, 48, 305, 2400, 22057, 230272, 2708001, 35412480, 509177801, 7986468864, 135718942801, 2483729876992, 48699677975145, 1018542257111040, 22634000289407297, 532557637644976128, 13226748101381102473, 345792863300174479360, 9492229607399841038961
OFFSET
0,3
COMMENTS
Radius of convergence of e.g.f. is |x| < r where r = 0.7650099545507... satisfies cosh(r) = 1/r. See A069814.
LINKS
FORMULA
a(2*n-1) == 1 (mod 4), a(2*n+2) == 0 (mod 4), for n>=1.
a(n) ~ n!/(1+r*sqrt(1-r^2))*(1/r)^n, where r = 0.7650099545507321... is the root of the equation r*cosh(r)=1. - Vaclav Kotesovec, Feb 13 2013
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1) * (2*k+1) * a(n-2*k-1). - Ilya Gutkovskiy, Mar 10 2022
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 48*x^4/4! + 305*x^5/5! +...
MATHEMATICA
CoefficientList[Series[1/(1-x*Cosh[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Feb 13 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(1/(1-x*cosh(x +x*O(x^n))), n)}
CROSSREFS
Sequence in context: A074143 A198892 A357790 * A354312 A052826 A358264
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 28 2012
STATUS
approved