The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A205535 Least nonnegative integer y such that Kronecker(y^2 - 4, n) == -1 and (x+2)^(n+1) == 5 -+ 2*y (mod n, mod x^2 +- y*x + 1), or -1 if there is no such y. 4
 -1, -1, 1, 0, -1, 1, -1, 0, -1, -1, -1, 0, -1, 3, -1, -1, -1, 1, -1, 0, -1, -1, -1, 0, -1, -1, -1, -1, -1, 1, -1, 0, -1, -1, -1, -1, -1, 3, -1, -1, -1, 1, -1, 0, -1, -1, -1, 0, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 0, -1, 5, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, -1, 3, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,14 COMMENTS Related to the 4.X Selfridge Conjecture by P. Underwood, which states that a(n)=-1 iff n > 5 is prime. (It seems that n=5 is the only prime that has a(n) >= 0.) Records are [n, a(n]): [0, -1], [2, 1], [13, 3], [61, 5], [109, 6], [1009, 9], [2689, 11], [8089, 15], [33049, 17], [53881, 21], [87481, 27],[483289, 29], [515761, 35], [1083289, 39], [3818929, 45], ... See A205534. LINKS P. Underwood, 4.X Selfridge Conjecture (on "Prime Pages" profile), Jan 2012. PROG (PARI) A205535(n)={/*isprime(n) &&*/for(y=0, n, kronecker(y^2-4, n)==-1 || next; Mod(x+Mod(2, n), x^2-y*x+1)^(n+1)==5+2*y || next; Mod(x+Mod(2, n), x^2+y*x+1)^(n+1)==5-2*y && return(y)); -1} /* the upper search bound is motivated from experimental data, which suggests that y << n, cf. A205534. If we admit the conjecture, we can prefix the for() loop with "isprime(n) &&". */ CROSSREFS Sequence in context: A304222 A134108 A176851 * A172972 A175739 A260196 Adjacent sequences:  A205532 A205533 A205534 * A205536 A205537 A205538 KEYWORD sign AUTHOR M. F. Hasler, Jan 28 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 16:58 EST 2020. Contains 331280 sequences. (Running on oeis4.)