login
A205523
Numbers k such that gcd(k, sigma(k)) == sigma(k) (mod k).
6
1, 2, 3, 5, 6, 7, 11, 12, 13, 17, 18, 19, 20, 23, 24, 28, 29, 31, 37, 40, 41, 43, 47, 53, 56, 59, 61, 67, 71, 73, 79, 83, 88, 89, 97, 101, 103, 104, 107, 109, 113, 120, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 180, 181, 191, 193, 196, 197, 199
OFFSET
1,2
COMMENTS
Numbers m such that A009194(m) = gcd(m, A000203(m)) = A000203(m) mod m = A054024(m).
Complement of A205524. Union of primes (A000040) and composite numbers from A205525.
LINKS
EXAMPLE
Number 24 is in sequence because gcd(24, sigma(24)) = (sigma(24)=60) mod 24 = 12.
MATHEMATICA
Select[Range[300], Mod[GCD[#, DivisorSigma[1, #]] - DivisorSigma[1, #], #] == 0 &]
PROG
(PARI) isok(n) = (gcd(n, sigma(n)) % n) == (sigma(n) % n); \\ Michel Marcus, Dec 22 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 28 2012
EXTENSIONS
Corrected by T. D. Noe, Feb 03 2012
STATUS
approved