login
A205510
Binary Hamming distance between prime(n) and prime(n+1).
23
1, 2, 1, 2, 2, 3, 1, 1, 2, 1, 4, 2, 1, 1, 3, 3, 2, 6, 1, 3, 2, 3, 2, 3, 1, 1, 2, 2, 3, 3, 6, 2, 1, 4, 1, 2, 5, 1, 2, 4, 2, 2, 6, 1, 1, 2, 2, 4, 2, 2, 2, 4, 2, 7, 2, 2, 1, 3, 2, 1, 5, 3, 1, 3, 1, 5, 3, 2, 2, 4, 2, 1, 3, 3, 1, 6, 1, 3, 1, 4, 2, 2, 4, 2, 2, 5, 1, 1, 1, 3, 2, 3, 2, 2, 1, 2, 7, 1, 3, 5
OFFSET
1,2
COMMENTS
We call "Hamming's twin primes" the pairs of consecutive primes (p,q) with Hamming distance 1. They are (2,3), (5,7), (17,19,), (19,23), (29,31), (41,43), (43,47), (67,71), (97,101), ..., (A205511,A205302). As in Twin Primes Conjecture, we conjecture that there exist infinitely many Hamming's twin pairs.
LINKS
MAPLE
a:= n-> add(i, i=Bits[GetBits](Bits[Xor](ithprime(n), ithprime(n+1)), 0..-1)):
seq(a(n), n=1..100); # Alois P. Heinz, Oct 11 2017
MATHEMATICA
Table[Count[IntegerDigits[BitXor[Prime[n], Prime[n+1]], 2], 1], {n, 100}] (* Jayanta Basu, May 26 2013 *)
PROG
(PARI) A205510(n)=norml2(binary(bitxor(prime(n), prime(n+1)))) \\ M. F. Hasler, Jan 29 2012
(PARI) a(n, p=prime(n), q=nextprime(p+1))=hammingweight(bitxor(p, q)) \\ Charles R Greathouse IV, Nov 15 2022
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Vladimir Shevelev, Jan 28 2012
EXTENSIONS
Corrected a(24) and a(25) by M. F. Hasler, Jan 29 2012
Added "binary" to definition. - N. J. A. Sloane, Jul 09 2021
STATUS
approved