This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A205293 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with permanents of 2X2 subblocks differing from horizontal and vertical neighbor permanents 9

%I

%S 81,476,476,2766,4836,2766,15728,45914,45914,15728,89630,426086,

%T 695725,426086,89630,511044,3972556,10133550,10133550,3972556,511044,

%U 2913944,37114078,150096812,234138348,150096812,37114078,2913944,16611380

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with permanents of 2X2 subblocks differing from horizontal and vertical neighbor permanents

%C Table starts

%C .......81........476.........2766..........15728.............89630

%C ......476.......4836........45914.........426086...........3972556

%C .....2766......45914.......695725.......10133550.........150096812

%C ....15728.....426086.....10133550......234138348........5509720956

%C ....89630....3972556....150096812.....5509720956......207765391957

%C ...511044...37114078...2227575108...130143053648.....7855617242012

%C ..2913944..346714732..33047965838..3070051844636...296866931188932

%C .16611380.3237486306.489959337766.72396270820102.11214042190996292

%H R. H. Hardin, <a href="/A205293/b205293.txt">Table of n, a(n) for n = 1..84</a>

%e Some solutions for n=4 k=3

%e ..2..2..0..0....2..1..0..0....1..0..2..2....0..0..1..0....2..1..0..0

%e ..1..0..2..1....0..1..1..0....2..1..0..2....1..1..2..2....0..2..1..2

%e ..2..1..1..2....1..1..1..1....2..0..1..1....2..2..2..2....1..2..1..0

%e ..2..2..1..2....2..1..0..2....1..2..1..0....2..1..1..0....1..2..2..1

%e ..1..1..2..2....0..2..2..2....2..1..0..2....1..1..1..1....0..1..0..2

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Jan 25 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 11:17 EDT 2019. Contains 323539 sequences. (Running on oeis4.)