%I #5 Mar 31 2012 12:37:05
%S 506493,1502057181,4456641224469,13223001109687815,
%T 39233079877190973984,116405840403665540209755,
%U 345379963095346349517061062,1024753727940861519383536350663,3040478068030817268714361386677391
%N Number of (n+1)X6 0..3 arrays with every 2X2 subblock having unequal diagonal elements or unequal antidiagonal elements, and new values 0..3 introduced in row major order
%C Column 5 of A205170
%H R. H. Hardin, <a href="/A205167/b205167.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3135*a(n-1) -509484*a(n-2) +33380704*a(n-3) -1155163860*a(n-4) +23371955456*a(n-5) -283352222404*a(n-6) +1930114342470*a(n-7) -4743702198614*a(n-8) -28028680059390*a(n-9) +252000315195083*a(n-10) -580096388359081*a(n-11) -1077099927330881*a(n-12) +8177716552088449*a(n-13) -13288317679713227*a(n-14) -9011132978044501*a(n-15) +64201793373718340*a(n-16) -103107108258103398*a(n-17) +83216273965787680*a(n-18) -34433623699903508*a(n-19) +5133203291666328*a(n-20) +802120907583504*a(n-21) -253519299407520*a(n-22)
%e Some solutions for n=4
%e ..0..0..1..2..0..3....0..0..0..0..1..1....0..1..0..1..0..0....0..1..1..0..2..1
%e ..3..0..1..0..1..2....2..0..2..2..1..0....0..1..1..1..0..2....1..1..0..3..2..3
%e ..1..1..1..0..1..0....3..2..2..0..2..3....3..0..1..2..1..1....3..0..0..2..1..3
%e ..3..2..1..1..1..0....3..0..1..2..3..3....2..1..2..3..0..1....2..0..1..0..2..0
%e ..3..1..3..0..1..0....3..1..1..1..3..0....2..0..0..1..3..0....1..2..1..3..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Jan 22 2012