login
The number s(j) such that n divides s(k)-s(j), where s(j) is the j-th Lucas number and k is the least positive integer for which such a j with 0<j<k exists.
3

%I #14 Jan 22 2018 03:06:02

%S 1,1,1,3,1,1,4,3,11,1,7,11,3,4,3,11,1,11,47,7,18,7,1,4,4,3,47,1,18,3,

%T 843,7,1,29,18,11,3,47,4,7,76,3,4,3,7,1,29,7,3,7,11,1,4,47,47,11,322,

%U 18,76,3

%N The number s(j) such that n divides s(k)-s(j), where s(j) is the j-th Lucas number and k is the least positive integer for which such a j with 0<j<k exists.

%C For a guide to related sequences, see A204892.

%H Robert Israel, <a href="/A205117/b205117.txt">Table of n, a(n) for n = 1..10000</a>

%p lucas:= gfun:-rectoproc({a(n)=a(n-1)+a(n-2),a(0)=2, a(1)=1},a(n),remember):

%p f:= proc(n) local j,k,S,t;

%p S:= [];

%p for k from 1 do

%p t:= lucas(k) mod n;

%p if member(t,S,j) then return lucas(j) fi;

%p S:= [op(S),t];

%p od

%p end proc:

%p map(f, [$1..100]); # _Robert Israel_, Jan 21 2018

%t (See the program at A205114.)

%Y Cf. A205114, A204892.

%K nonn,look

%O 1,4

%A _Clark Kimberling_, Jan 22 2012

%E Name corrected by _Robert Israel_, Jan 21 2018