%I #46 Apr 21 2024 19:08:12
%S 1,1,0,1,1,0,0,0,1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0,0,0,
%T 0,0,1,1,0,1,0,0,0,0,0,0,0,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,0,1,0,1,0,
%U 0,1,0,0,1,1,1,1,0,1,1,0,1,1,1,1,1,1
%N Parity of A070885.
%C A simple unpredictable binary sequence.
%C If you change a(1) to "2", then the concatenation of the first n terms yields the first length-n term of A024629 with positive even index. - _Glen Whitney_, Sep 17 2017
%C After the first term, this is also the parity of A061419. - _Matthew House_, Apr 21 2024
%D Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, 2002, p. 122.
%H Ben Branman, <a href="/A205083/b205083.txt">Table of n, a(n) for n = 1..20000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WolframSequences.html">Wolfram Sequences</a>.
%t a[1] = 1; a[n_] := a[n] = If[EvenQ[a[n - 1]], 3 a[n - 1]/2, (3/2) (a[n - 1] + 1)]; Mod[Table[a[n], {n, 1, 100}], 2]
%o (PARI) A205083={my(maxx=50);q=ctr=1;print1(q%2,",");
%o while(ctr<maxx,q=3*ceil(q/2);ctr+=1;print1(q%2,",") );} \\ _Bill McEachen_, Mar 12 2015
%Y Cf. A070885, A024629.
%K nonn,easy
%O 1
%A _Ben Branman_, Jan 22 2012