login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A204820 a(n) = -4*a(n-1)*A001505(n-2), with a(1)=8. 1
8, -192, 161280, -638668800, 6974263296000, -162193467211776000, 6893871130369327104000, -483949753351926762700800000, 52208499391605859160162304000000, -8200911084433448356878294712320000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Sums of coefficients from (4n+1)th moments of binomial(m,k) * binomial(3*m,k); see Maple code below.

LINKS

Table of n, a(n) for n=1..10.

Eric W. Weisstein, MathWorld: Binomial Sums

Index to divisibility sequences

FORMULA

a(n)=-(1/8)*GAMMA(2*n-3/2)*GAMMA(n-1/2)*(-1)^n*64^n/Pi

EXAMPLE

The evaluation of sum(binomial(n, k)*binomial(3*n, k)*k^9, k=0..n) involves the polynomial 2187*n^11+6561*n^10-45927*n^9-28431*n^8+322947*n^7-257985*n^6-473445*n^5+726003*n^4-110482*n^3-189924*n^2+52624*n-4320, the sum of the coefficients of which is -192 = a(2).

MAPLE

with(PolynomialTools); polyn:=q->expand(simplify((1/(GAMMA(n-((2*floor((q+1)/4)-1))/(2))))*(1/sqrt(3))*GAMMA(n+1/3)*GAMMA(n+2/3)*(1/3)*(1/(27^(-n)))*GAMMA(n)*1/64^n*sum(binomial(n, k)*binomial(3*n, k)*k^q, k=0..n)*(1/(GAMMA(2*n-((2*floor(q/2)-1)/(2)))))*(2^((floor((1/2)*q+1/2)-1)+q)))); coefl:=h->CoefficientList(expand(polyn(h)), n); coe:=(d, b)->coefl(d)[b]; seq(sum(coe((4*d+1), b), b=1..(4*d+1)+floor(((4*d+1)+1)/4)+floor((4*d+1)/2)), d=1..6); seq(-(1/8)*GAMMA(2*n-3/2)*GAMMA(n-1/2)*(-1)^n*64^n/Pi, n=1..6);

CROSSREFS

Cf. A203778, A015219, A202948, A202946.

Sequence in context: A128406 A265269 A003956 * A041269 A172340 A103500

Adjacent sequences:  A204817 A204818 A204819 * A204821 A204822 A204823

KEYWORD

easy,sign

AUTHOR

John M. Campbell, Jan 19 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 00:25 EST 2019. Contains 329083 sequences. (Running on oeis4.)