login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+2)X5 0..2 arrays with no 3X3 subblock having three equal diagonal elements or three equal antidiagonal elements, and new values 0..2 introduced in row major order
1

%I #5 Mar 31 2012 12:37:03

%S 1180224,160435446,21570701058,2890032532056,387664140116880,

%T 51989763458957400,6972630432052561776,935137622698422608736,

%U 125416235123858092458096,16820240718943856746911744

%N Number of (n+2)X5 0..2 arrays with no 3X3 subblock having three equal diagonal elements or three equal antidiagonal elements, and new values 0..2 introduced in row major order

%C Column 3 of A204782

%H R. H. Hardin, <a href="/A204777/b204777.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 139*a(n-1) -91120*a(n-3) +133552*a(n-4) +42248076*a(n-5) -149986356*a(n-6) -7637679060*a(n-7) +313732968864*a(n-8) -38217278758320*a(n-9) +156983430294144*a(n-10) +3146043316395312*a(n-11) -22524502662024800*a(n-12) +777226283328788768*a(n-13) -2923856345749409280*a(n-14) -55967658209930232128*a(n-15) +288975848517914503808*a(n-16) +38954422078319864832*a(n-17) -6182801204412109345536*a(n-18) +16684100050565913346560*a(n-19) +250356441942356912185344*a(n-20) -2383818791297995227921408*a(n-21) +1201231326963892811839488*a(n-22) +86802835054091019154550784*a(n-23) -184887655399216097211469824*a(n-24) +471923427737198981007802368*a(n-25) -1105116310670533761772781568*a(n-26) +8839932835611664798842028032*a(n-27) -144669014392674806035633668096*a(n-28) +450994890935237153381157961728*a(n-29) -291707817095511715532134809600*a(n-30) -27193350116155962634997969977344*a(n-31) +14610495860844431841467075395584*a(n-32) +71611394407979021390497695399936*a(n-33) -39885557889095088580277437464576*a(n-34) -505135228048555321215662325497856*a(n-35) +630569166822546215503538014912512*a(n-36) -248452930839886449596900988420096*a(n-37) +526298018115099117274747744813056*a(n-38) +61968287910240254616686971481751552*a(n-39) -31166308186060813617619771053834240*a(n-40) -119157499688627783035052503225860096*a(n-41) +68879591620458111760382530726920192*a(n-42) +1303817841279799249962996202790191104*a(n-43) -991814099212870169326345207098114048*a(n-44) -1676724409254838964837194313056124928*a(n-45) +790061313693482027810811270301483008*a(n-46) -39260160904271413856472704669454434304*a(n-47) +23310288012876239389061106505497968640*a(n-48) +82112809486892283035692868064126173184*a(n-49) -47379038370425292034007364935784333312*a(n-50) -147039553387406857205575820606240194560*a(n-51) +95223216026612306973536229244853551104*a(n-52) -81546391794155061437501143765217181696*a(n-53) +86118064909915539137280691409145298944*a(n-54) +2310263373801310827876943006321952686080*a(n-55) -1357420446491639344646358413831609253888*a(n-56) -67278639720595731178377088196319117312*a(n-57) -154291462019127049141482660348479668224*a(n-58) -3385126747711336339558048425047293427712*a(n-59) +1821392370949169125647162467129896206336*a(n-60) +104474909490376310181853533272788697088*a(n-61) +812752711529833869502920372858365411328*a(n-63) -425467862411590884706226772368808738816*a(n-64)

%e Some solutions for n=3

%e ..0..1..0..0..2....0..1..1..1..1....0..1..2..0..2....0..0..1..2..1

%e ..0..0..0..0..1....2..1..2..2..2....2..0..2..2..0....1..1..2..1..1

%e ..1..1..2..2..2....0..1..0..2..2....1..2..1..2..1....2..0..2..1..2

%e ..0..1..2..0..1....1..1..0..1..1....0..1..1..2..1....0..0..2..2..0

%e ..1..0..2..2..2....2..1..1..0..1....2..0..2..2..2....1..0..0..2..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Jan 19 2012