login
A204664
Numbers n such that n!8-2 is prime.
8
4, 5, 7, 9, 11, 15, 17, 25, 27, 33, 47, 59, 63, 77, 87, 89, 93, 95, 107, 119, 127, 133, 139, 193, 201, 217, 269, 291, 369, 373, 435, 445, 669, 803, 831, 859, 907, 1271, 1705, 1743, 1849, 3087, 3189, 3497, 4221, 4475, 5119, 6013, 8023, 9237, 12755, 16501, 16747, 17021, 17309, 20671, 21539, 28377, 33625, 35645, 36831, 54663, 56223, 65299, 66159, 68121, 69339, 70579, 73511, 77745, 94601
OFFSET
1,1
COMMENTS
n!8 = A114800(n).
See also links in A156165.
For odd k, n!k +- 2 is even for all n > k and thus cannot be prime.
a(62) > 50000. - Robert Price, Aug 27 2012
The first 10 associated primes: 2, 3, 5, 7, 31, 103, 151, 3823, 16927, 126223. - Robert Price, Mar 10 2017
a(72) > 10^5. - Robert Price, Apr 24 2017
MATHEMATICA
MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
Select[Range[4, 50000], PrimeQ[MultiFactorial[#, 8] - 2] &] (* Robert Price, Mar 10 2017 *)
PROG
(PARI) for(n=0, 9999, isprime(prod(i=0, (n-2)\8, n-8*i)-2)& print1(n", "))
KEYWORD
nonn,hard
AUTHOR
M. F. Hasler, Jan 17 2012
EXTENSIONS
a(46)-a(61) from Robert Price, Aug 27 2012
a(62)-a(71) from Robert Price, Apr 24 2017
STATUS
approved