login
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) nondecreasing in column and row directions, respectively
9

%I #5 Mar 31 2012 12:37:02

%S 8,16,16,28,32,28,48,56,56,48,80,90,104,90,80,132,137,178,178,137,132,

%T 216,200,284,330,284,200,216,352,283,434,571,571,434,283,352,572,390,

%U 637,938,1076,938,637,390,572,928,526,908,1478,1918,1918,1478,908,526,928

%N T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) nondecreasing in column and row directions, respectively

%C Table starts

%C ...8..16..28...48...80...132...216...352...572....928...1504...2436...3944

%C ..16..32..56...90..137...200...283...390...526....696....906...1162...1471

%C ..28..56.104..178..284...434...637...908..1259...1708...2270...2966...3814

%C ..48..90.178..330..571...938..1478..2248..3317...4766...6690...9198..12415

%C ..80.137.284..571.1076..1918..3261..5329..8408..12867..19162..27859..39640

%C .132.200.434..938.1918..3702..6780.11868.19969..32450..51134..78404.117324

%C .216.283.637.1478.3261..6780.13314.24862.44426..76378.126906.204583.321038

%C .352.390.908.2248.5329.11868.24862.49312.93219.168960.295101.498776.818748

%H R. H. Hardin, <a href="/A204651/b204651.txt">Table of n, a(n) for n = 1..6956</a>

%F Empirical: T(n,k) recurrences

%F T(1,k)=2*T(1,k-1)-T(1,k-3)

%F T(2,k)=4*T(2,k-1)-5*T(2,k-2)+5*T(2,k-4)-4*T(2,k-5)+T(2,k-6)

%F T(3,k)=4*T(3,k-1)-5*T(3,k-2)+5*T(3,k-4)-4*T(3,k-5)+T(3,k-6) for k>7

%F T(4,k)=5*T(4,k-1)-9*T(4,k-2)+5*T(4,k-3)+5*T(4,k-4)-9*T(4,k-5)+5*T(4,k-6)-T(4,k-7) for k>9

%F and in general for n>2 (checked to n=15 k=210):

%F row recurrence coefficients are the coefficients of (1+x)*(1-x)^(k+2) and the row recurrence is valid for k>2*n+1

%e Some solutions for n=5 k=3

%e ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..1....0..0..0..1

%e ..0..0..0..0....0..0..0..1....0..0..0..1....0..0..0..1....0..0..1..1

%e ..0..0..0..0....0..0..0..1....0..0..0..1....0..0..0..1....0..0..1..1

%e ..0..0..1..1....0..0..1..1....0..0..0..1....0..0..0..1....0..0..1..1

%e ..0..0..1..1....1..1..1..1....0..0..0..1....0..0..0..1....0..1..1..1

%e ..0..0..1..1....1..1..1..1....1..1..1..0....0..1..1..1....0..1..1..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Jan 17 2012