%I
%S 0,1,4,9,16,36,81,144,225,324,441,576,729,900,1089,1296,1521,1764,
%T 2025,2304,2601,2916,3249,3600,3969,4356,4761,5184,5625,6084,6561,
%U 7056,7569,8100,8649,9216,9801,10404,11025,11664,12321,12996,13689,14400,15129,15876
%N Squares n^2 such that floor(n^2/9) is again a square.
%C Or: Squares which remain squares when their last base9 digit is dropped.
%C (For the first three terms, which have only 1 digit in base 9, dropping that digit is meant to yield zero.)
%C Base9 analog of A055792 (base 2), A055793 (base 3), A055808 (base 4), A055812 (base 5), A055851 (base 6), A055859 (base 7), A055872(base 8) and A023110 (base 10).
%H M. F. Hasler, <a href="/wiki/M._F._Hasler/Truncated_squares">Truncated squares</a>, OEIS wiki, Jan 16 2012
%H <a href="/index/Sq#sqtrunc">Index to sequences related to truncating digits of squares</a>.
%F a(n) = A204502(n)^2.
%F Conjectures: a(n) = 9*(n4)^2 for n>5. G.f.: x^2*(7*x^612*x^511*x^4x1) / (x1)^3.  _Colin Barker_, Sep 15 2014
%t Select[Range[0,200]^2,IntegerQ[Sqrt[Floor[#/9]]]&] (* _Harvey P. Dale_, Jan 27 2012 *)
%o (PARI) b=9;for(n=1,200,issquare(n^2\b) & print1(n^2,","))
%K nonn,base
%O 1,3
%A _M. F. Hasler_, Jan 15 2012
