This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A204464 Number of 2*n-element subsets that can be chosen from {1,2,...,16*n} having element sum n*(16*n+1). 1
 1, 8, 790, 148718, 35154340, 9408671330, 2725410001024, 834014033203632, 265724127467961324, 87318355216835049968, 29402690636348418710858, 10098693807141197229592054, 3525753285145412581617963136, 1248001014165722671454730108968, 446964111600452023289482445527716 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the number of partitions of n*(16*n+1) into 2*n distinct parts <=16*n. LINKS EXAMPLE a(1) = 8 because there are 8 2-element subsets that can be chosen from {1,2,...,16} having element sum 17: {1,16}, {2,15}, {3,14}, {4,13}, {5,12}, {6,11}, {7,10}, {8,9}. MAPLE b:= proc(n, i, t) option remember;       `if` (it*(2*i-t+1)/2, 0,       `if` (n=0, 1, b(n, i-1, t) +`if`(n b(n*(16*n+1), 16*n, 2*n): seq (a(n), n=0..10); CROSSREFS Bisection of row n=8 of A204459. Sequence in context: A184974 A060183 A145415 * A001547 A168310 A220186 Adjacent sequences:  A204461 A204462 A204463 * A204465 A204466 A204467 KEYWORD nonn AUTHOR Alois P. Heinz, Jan 18 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .