The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A204441 Symmetric matrix: f(i,j)=floor[(i+j+2)/4]-floor[(i+j-1)/4], by (constant) antidiagonals. 3
 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS A block matrix over {0,1}.  For guides to related matrices and permanents, see A204435 and A204263. LINKS EXAMPLE Northwest corner: 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 MATHEMATICA f[i_, j_] := Floor[(i + j + 2)/4] - Floor[(i + j - 1)/4]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i],   {n, 1, 14}, {i, 1, n}]]        (* A204441 *) Permanent[m_] :=   With[{a = Array[x, Length[m]]},    Coefficient[Times @@ (m.a), Times @@ a]]; Table[Permanent[m[n]], {n, 1, 22}]    (* A204442 *) CROSSREFS Cf. A204442, A204435. Sequence in context: A082551 A152614 A127507 * A127247 A127244 A144778 Adjacent sequences:  A204438 A204439 A204440 * A204442 A204443 A204444 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Jan 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 14:52 EST 2020. Contains 338769 sequences. (Running on oeis4.)