login
a(n) is the number of k satisfying 1 <= k <= n and such that floor(sqrt(k)) divides k.
0

%I #24 May 27 2013 07:12:46

%S 1,2,3,4,4,5,5,6,7,7,7,8,8,8,9,10,10,10,10,11,11,11,11,12,13,13,13,13,

%T 13,14,14,14,14,14,15,16,16,16,16,16,16,17,17,17,17,17,17,18,19,19,19,

%U 19,19,19,19,20,20,20,20,20,20,20,21,22,22,22,22,22,22,22

%N a(n) is the number of k satisfying 1 <= k <= n and such that floor(sqrt(k)) divides k.

%C a(n) = floor(2*sqrt(n)) + floor(sqrt(n-1)) - 1 if n belongs to A135106 otherwise a(n) = floor(2*sqrt(n)) + floor(sqrt(n-1)) - 2.

%H B. Cloitre, <a href="http://dl.dropbox.com/u/46675017/divisibility_sequences.pdf">Some divisibility sequences</a>

%F a(n) = card{j>=1, A006446(j)<=n}.

%t Accumulate[Boole[Table[IntegerQ[n/Floor[n^(1/2)]], {n, 1, 70}]]] (* _Geoffrey Critzer_, May 25 2013 *)

%o (PARI) a(n)=sum(k=1,n,if(k%sqrtint(k),0,1));

%Y Cf. A006446, A079631.

%K nonn

%O 1,2

%A _Benoit Cloitre_, Jan 14 2012

%E Corrected by _Geoffrey Critzer_, May 25 2013