OFFSET
1,4
COMMENTS
Compare g.f. to the Lambert series identity: Sum_{n>=1} lambda(n)*x^n/(1-x^n) = Sum_{n>=1} x^(n^2); Liouville's function lambda(n) = (-1)^k, where k is number of primes dividing n (counted with multiplicity).
LINKS
Robert Israel, Table of n, a(n) for n = 1..2500
FORMULA
EXAMPLE
G.f.: A(x) = x + 12*x^4 + 985*x^9 + 470832*x^16 + 1311738121*x^25 +...
where A(x) = x/(1-2*x-x^2) + (-1)*2*x^2/(1-6*x^2+x^4) + (-1)*5*x^3/(1-14*x^3-x^6) + (+1)*12*x^4/(1-34*x^4+x^8) + (-1)*29*x^5/(1-82*x^5-x^10) + (+1)*70*x^6/(1-198*x^6+x^12) +...+ lambda(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
MAPLE
pell:= gfun:-rectoproc({a(0)=0, a(1)=1, a(n)=2*a(n-1)+a(n-2)}, a(n), remember):
seq(`if`(issqr(n), pell(n), 0), n=1..100); # Robert Israel, Nov 24 2015
MATHEMATICA
CoefficientList[Sum[Fibonacci[n^2, 2] x^n^2/x, {n, 1, 8}], x] (* Jean-François Alcover, Mar 25 2019 *)
PROG
(PARI) /* Subroutines used in PARI programs below: */
{Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
{A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
(PARI) {a(n)=issquare(n)*Pell(n)}
(PARI) {lambda(n)=local(F=factor(n)); (-1)^sum(i=1, matsize(F)[1], F[i, 2])}
{a(n)=polcoeff(sum(m=1, n, lambda(m)*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 14 2012
STATUS
approved