%I #9 Jan 27 2018 06:35:07
%S 1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
%T 0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
%U 0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N Symmetric matrix: f(i,j)=floor[(i+j+2)/4]-floor[(i+j)/4], by (constant) antidiagonals.
%C A block matrix over {0,1}. In the following guide to related matrices and permanents, Duvwxyz represents the matrix remaining after row 1 of the matrix Auvwxyz is deleted:
%C Matrix................Permanent of n-th submatrix
%C A204269=D204549.......A204422
%C A204545=D204269.......A204546
%C A204547=D204545.......A204548
%C A204549=D204547.......A204550
%H G. C. Greubel, <a href="/A204269/b204269.txt">Table of n, a(n) for the first 100 antidiagonals</a>
%e Northwest corner:
%e 1 1 0 0 1 1 0 0
%e 1 0 0 1 1 0 0 1
%e 0 0 1 1 0 0 1 1
%e 0 1 1 0 0 1 1 0
%e 1 1 0 0 1 1 0 0
%e 1 0 0 1 1 0 0 1
%e 0 0 1 1 0 0 1 1
%e 0 1 1 0 0 1 1 0
%t f[i_, j_] := Floor[(i + j + 2)/4] - Floor[(i + j)/4];
%t m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
%t TableForm[m[8]] (* 8x8 principal submatrix *)
%t Flatten[Table[f[i, n + 1 - i],
%t {n, 1, 14}, {i, 1, n}]] (* A204269 *)
%t Permanent[m_] :=
%t With[{a = Array[x, Length[m]]},
%t Coefficient[Times @@ (m.a), Times @@ a]];
%t Table[Permanent[m[n]], {n, 1, 22}] (* A204422 *)
%Y Cf. A204448, A204435.
%K nonn,tabl
%O 1
%A _Clark Kimberling_, Jan 16 2012