login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A204168 Array:  row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of (i+j), as in A003057. 2
2, -1, -1, -6, 1, 0, 6, 12, -1, 0, 0, -20, -20, 1, 0, 0, 0, 50, 30, -1, 0, 0, 0, 0, -105, -42, 1, 0, 0, 0, 0, 0, 196, 56, -1, 0, 0, 0, 0, 0, 0, -336, -72, 1, 0, 0, 0, 0, 0, 0, 0, 540, 90, -1, 0, 0, 0, 0, 0, 0, 0, 0, -825, -110, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix.  The zeros of p(n) are real, and they interlace the zeros of p(n+1).  See A202605 and A204016 for guides to related sequences.

REFERENCES

(For references regarding interlacing roots, see A202605.)

LINKS

Table of n, a(n) for n=1..65.

EXAMPLE

Top of the array:

2....-1

-1....-6.....1

0.....6.....12....-1

0.....0....-20....-20...1

MATHEMATICA

f[i_, j_] := i + j;

m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]

TableForm[m[8]] (* 8x8 principal submatrix *)

Flatten[Table[f[i, n + 1 - i],

  {n, 1, 15}, {i, 1, n}]]  (* A003057 *)

p[n_] := CharacteristicPolynomial[m[n], x];

c[n_] := CoefficientList[p[n], x]

TableForm[Flatten[Table[p[n], {n, 1, 10}]]]

Table[c[n], {n, 1, 12}]

Flatten[%]                 (* A204168 *)

TableForm[Table[c[n], {n, 1, 10}]]

CROSSREFS

Cf. A003057, A202605, A204016.

Sequence in context: A025264 A321716 A245567 * A216914 A216917 A216919

Adjacent sequences:  A204165 A204166 A204167 * A204169 A204170 A204171

KEYWORD

tabl,sign

AUTHOR

Clark Kimberling, Jan 12 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 07:45 EDT 2020. Contains 333079 sequences. (Running on oeis4.)