This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A204160 Symmetric matrix based on f(i,j)=(3i-2 if i=j and = 0 otherwise), by antidiagonals. 3
 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS A204160 represents the matrix M given by f(i,j)=(3i-2 if i=j and = 0 otherwise) for i>=1 and j>=1.  See A204161 for characteristic polynomials of principal submatrices of M, with interlacing zeros.  See A204016 for a guide to other choices of M. LINKS EXAMPLE Northwest corner: 1 1 1 1 1 4 1 1 1 1 7 1 1 1 1 10 MATHEMATICA f[i_, j_] := 1; f[i_, i_] := 3 i - 2; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i],   {n, 1, 15}, {i, 1, n}]]    (* A204160 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%]                   (* A204161 *) TableForm[Table[c[n], {n, 1, 10}]] CROSSREFS Cf. A204161, A204016, A202453. Sequence in context: A103524 A110916 A185058 * A184101 A164561 A178764 Adjacent sequences:  A204157 A204158 A204159 * A204161 A204162 A204163 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Jan 12 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 00:52 EDT 2019. Contains 328315 sequences. (Running on oeis4.)