This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A204154 Symmetric matrix based on f(i,j) = max(2i-j, 2j-i), by antidiagonals. 5
 1, 3, 3, 5, 2, 5, 7, 4, 4, 7, 9, 6, 3, 6, 9, 11, 8, 5, 5, 8, 11, 13, 10, 7, 4, 7, 10, 13, 15, 12, 9, 6, 6, 9, 12, 15, 17, 14, 11, 8, 5, 8, 11, 14, 17, 19, 16, 13, 10, 7, 7, 10, 13, 16, 19, 21, 18, 15, 12, 9, 6, 9, 12, 15, 18, 21, 23, 20, 17, 14, 11, 8, 8, 11, 14, 17, 20 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A204154 represents the matrix M given by f(i,j) = max(2i-j, 2j-i) for i >= 1 and j >= 1.  See A204155 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M. LINKS Robert Israel, Table of n, a(n) for n = 1..10011 (first 141 antidiagonals, flattened) FORMULA G.f. as array: (1 + x + y - 7*y*x + 2*y*x^2 + 2*y^2*x)*x*y/((1-x*y)*(1-x)^2*(1-y)^2). - Robert Israel, Dec 03 2017 EXAMPLE Northwest corner:   1, 3, 5, 7, 9, ...   3, 2, 4, 6, 8, ...   5, 4, 3, 5, 7, ...   7, 6, 5, 4, 6, ...   9, 8, 7, 6, 5, ...   ... MAPLE seq(seq(max(3*j-m, 2*m-3*j), j=1..m-1), m=2..19); # Robert Israel, Dec 03 2017 MATHEMATICA f[i_, j_] := Max[2 i - j, 2 j - i]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i],   {n, 1, 15}, {i, 1, n}]]  (* A204154 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%]                 (* A204155 *) TableForm[Table[c[n], {n, 1, 10}]] CROSSREFS Cf. A204155, A204016, A202453. Sequence in context: A229087 A142961 A101777 * A267089 A016555 A214745 Adjacent sequences:  A204151 A204152 A204153 * A204155 A204156 A204157 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Jan 12 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 19 17:21 EDT 2019. Contains 321330 sequences. (Running on oeis4.)