OFFSET
1,3
COMMENTS
Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). The least zero of p(n) is -n.
For n>1, the least zero of p(n) is exactly 1-n; the greatest, for p(1) to p(5) is represented by (1,3,5.701...,9.158...13.392...).
REFERENCES
(For references regarding interlacing roots, see A202605.)
EXAMPLE
Top of the array:
1....-1
-3....-2......1
8.....14.....3....-1
-21...-64....-40...-4...1
MATHEMATICA
f[i_, j_] := 1 + Max[Mod[i, j], Mod[j, i]];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[6]] (* 6x6 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 15}, {i, 1, n}]] (* A204018 *)
p[n_] := CharacteristicPolynomial[m[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%] (* A204019 *)
TableForm[Table[c[n], {n, 1, 10}]]
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Clark Kimberling, Jan 11 2012
STATUS
approved