login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A204008 Symmetric matrix based on f(i,j) = max{3i+j-3,i+3j-3}, by antidiagonals. 7
1, 4, 4, 7, 5, 7, 10, 8, 8, 10, 13, 11, 9, 11, 13, 16, 14, 12, 12, 14, 16, 19, 17, 15, 13, 15, 17, 19, 22, 20, 18, 16, 16, 18, 20, 22, 25, 23, 21, 19, 17, 19, 21, 23, 25, 28, 26, 24, 22, 20, 20, 22, 24, 26, 28, 31, 29, 27, 25, 23, 21, 23, 25, 27, 29, 31, 34, 32, 30 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A204008 represents the matrix M given by f(i,j)=max{3i+j-3,i+3j-3}for i>=1 and j>=1. See A204011 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

General case A206772. Let m be natural number. Table T(n,k)=max{m*n+k-m,n+m*k-m} read by antidiagonals.

  For m=1 the result is A002024,

  for m=2 the result is A204004,

  for m=3 the result is A204008,

  for m=4 the result is A206772. - Boris Putievskiy, Jan 24 2013

LINKS

Table of n, a(n) for n=1..69.

Boris Putievskiy, Transformations [Of] Integer Sequences And Pairing Functions, arXiv preprint arXiv:1212.2732, 2012.

FORMULA

From Boris Putievskiy, Jan 24 2013: (Start)

For the general case, a(n) = m*A002024(n) + (m-1)*max{-A002260(n),-A004736(n)}.

a(n) = m*(t+1) + (m-1)*max{t*(t+1)/2-n,n-(t*t+3*t+4)/2}, where t=floor((-1+sqrt(8*n-7))/2).

For m=3, a(n) = 3*(t+1) + 2*max{t*(t+1)/2-n,n-(t*t+3*t+4)/2}, where t=floor((-1+sqrt(8*n-7))/2). (End)

EXAMPLE

Northwest corner:

   1,  4,  7, 10

   4,  5,  8, 11

   7,  8,  9, 12

  10, 11, 12, 13

MATHEMATICA

f[i_, j_] := Max[3 i + j - 3, 3 j + i - 3];

m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]

TableForm[m[6]] (* 6x6 principal submatrix *)

Flatten[Table[f[i, n + 1 - i],

{n, 1, 12}, {i, 1, n}]]   (* A204008 *)

p[n_] := CharacteristicPolynomial[m[n], x];

c[n_] := CoefficientList[p[n], x]

TableForm[Flatten[Table[p[n], {n, 1, 10}]]]

Table[c[n], {n, 1, 12}]

Flatten[%]                (* A204011 *)

TableForm[Table[c[n], {n, 1, 10}]]

CROSSREFS

Cf. A204011, A202453, A002024, A204004, A002260, A004736, A206772.

Sequence in context: A048785 A271781 A243454 * A237708 A016711 A023404

Adjacent sequences:  A204005 A204006 A204007 * A204009 A204010 A204011

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Jan 09 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 21 20:21 EDT 2019. Contains 321382 sequences. (Running on oeis4.)