This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A204004 Symmetric matrix based on f(i,j) = max{2i+j-2,i+2j-2}, by antidiagonals. 5
 1, 3, 3, 5, 4, 5, 7, 6, 6, 7, 9, 8, 7, 8, 9, 11, 10, 9, 9, 10, 11, 13, 12, 11, 10, 11, 12, 13, 15, 14, 13, 12, 12, 13, 14, 15, 17, 16, 15, 14, 13, 14, 15, 16, 17, 19, 18, 17, 16, 15, 15, 16, 17, 18, 19, 21, 20, 19, 18, 17, 16, 17, 18, 19, 20, 21, 23, 22, 21, 20, 19, 18 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A204004 represents the matrix M given by f(i,j)=max{2i+j,i+2j}for i>=1 and j>=1. See A204005 for characteristic polynomials of principal submatrices of M, with interlacing zeros. General case A206772. Let m be natural number. Table T(n,k)=max{m*n+k-m,n+m*k-m} read by antidiagonals.   For m=1 the result is A002024,   for m=2 the result is A204004,   for m=3 the result is A204008,   for m=4 the result is A206772. - Boris Putievskiy, Jan 24 2013 LINKS Boris Putievskiy, Transformations [Of] Integer Sequences And Pairing Functions, arXiv preprint arXiv:1212.2732 [math.CO], 2012. FORMULA From Boris Putievskiy, Jan 24 2013: (Start) For the general case, a(n) = m*A002024(n) + (m-1)*max{-A002260(n),-A004736(n)}. a(n) = m*(t+1) + (m-1)*max{t*(t+1)/2-n,n-(t*t+3*t+4)/2}, where t=floor((-1+sqrt(8*n-7))/2). For m=2, a(n) = 2*(t+1) + max{t*(t+1)/2-n,n-(t*t+3*t+4)/2}, where t=floor((-1+sqrt(8*n-7))/2). (End) EXAMPLE Northwest corner:   1,  3,  5,  7,  9   3,  4,  6,  8, 10   5,  6,  7,  9, 11   7,  8,  9, 10, 12 MATHEMATICA f[i_, j_] := Max[2 i + j - 2, 2 j + i - 2]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[6]] (* 6x6 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]  (* A204004 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%]   (* A204005 *) TableForm[Table[c[n], {n, 1, 10}]] CROSSREFS Cf. A204005, A202453, A002024, A204008, A002260, A004736, A206772. Sequence in context: A290284 A258802 A072820 * A131950 A116192 A090104 Adjacent sequences:  A204001 A204002 A204003 * A204005 A204006 A204007 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Jan 09 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 10:18 EDT 2019. Contains 321491 sequences. (Running on oeis4.)