The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203991 Array:  row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of {(i+j)*min(i,j)} (A203990). 3
 2, -1, 7, -10, 1, 38, -71, 28, -1, 281, -610, 357, -60, 1, 2634, -6329, 4620, -1253, 110, -1, 29919, -77530, 65613, -23348, 3514, -182, 1, 399342, -1098271, 1036044, -442349, 90800, -8442, 280, -1, 6125265 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix.  The zeros of p(n) are real, and they interlace the zeros of p(n+1).  See A202605 for a guide to related sequences. REFERENCES (For references regarding interlacing roots, see A202605.) LINKS EXAMPLE Top of the array: 2.... -1 7.... -10... 1 38... -71... 28... -1 281.. -610.. 357.. -60... 1 MATHEMATICA f[i_, j_] := (i + j) Min[i, j]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[6]] (* 6x6 principal submatrix *) Flatten[Table[f[i, n + 1 - i],   {n, 1, 12}, {i, 1, n}]]  (* A203990 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%]               (* A203991 *) TableForm[Table[c[n], {n, 1, 10}]] CROSSREFS Cf. A203990, A202605. Sequence in context: A032210 A032135 A032039 * A075118 A100245 A275320 Adjacent sequences:  A203988 A203989 A203990 * A203992 A203993 A203994 KEYWORD tabl,sign AUTHOR Clark Kimberling, Jan 09 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 01:16 EDT 2020. Contains 334858 sequences. (Running on oeis4.)