OFFSET
1,3
COMMENTS
Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.
The characteristic polynomial seems be the recurrence relation given by p(n,x) = -x * p(n-1,x) + n * (-1)^(n-1) * sum_{i=0..n-1} x^i * binomial(2n-i-2,i). - Enrique Pérez Herrero, Jan 29 2013
REFERENCES
(For references regarding interlacing roots, see A202605.)
EXAMPLE
Top of the array:
1... -1
-2... -3.... 1
3.... 11... 6... -1
-4... -23.. -35.. -10...1
5.... 39... 98... 85...15.. -1
MATHEMATICA
f[i_, j_] := Max[i, j];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[6]] (* 6th principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A051125 *)
p[n_] := CharacteristicPolynomial[m[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%] (* A203989 *)
TableForm[Table[c[n], {n, 1, 10}]]
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Clark Kimberling, Jan 09 2012
STATUS
approved