login
A203959
Number of (n+1)X3 0..2 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) such that rows of b(i,j) and columns of c(i,j) are lexicographically nondecreasing
1
121, 851, 6586, 45307, 276516, 1512850, 7559349, 35013044, 152204393, 627158203, 2469369220, 9352485042, 34260022340, 121947287786, 423429014908, 1439022449239, 4800503801815, 15758894017829, 51018990415219
OFFSET
1,1
COMMENTS
Column 2 of A203965
LINKS
FORMULA
Empirical: a(n) = 22*a(n-1) -218*a(n-2) +1274*a(n-3) -4794*a(n-4) +11682*a(n-5) -16350*a(n-6) +3138*a(n-7) +38004*a(n-8) -79674*a(n-9) +61398*a(n-10) +35118*a(n-11) -127974*a(n-12) +113430*a(n-13) -3210*a(n-14) -85098*a(n-15) +79101*a(n-16) -21204*a(n-17) -17108*a(n-18) +19328*a(n-19) -8656*a(n-20) +1984*a(n-21) -192*a(n-22) for n>25
EXAMPLE
Some solutions for n=4
..2..0..1....2..0..1....1..2..2....0..1..2....2..2..2....1..1..2....1..0..2
..0..2..1....0..2..1....1..2..2....2..1..1....2..2..2....2..2..2....0..1..1
..2..1..2....2..1..2....1..2..2....1..2..0....2..2..2....2..2..2....2..1..1
..1..2..1....2..1..2....2..2..2....1..2..2....2..2..2....2..2..2....1..2..1
..2..1..2....1..2..1....2..2..2....1..2..2....2..2..2....2..2..2....1..2..2
CROSSREFS
Sequence in context: A361658 A293588 A365969 * A362319 A211472 A223389
KEYWORD
nonn
AUTHOR
R. H. Hardin Jan 08 2012
STATUS
approved