The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203954 Array:  row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A203953. 3
 1, -1, 1, -6, 1, 1, -20, 12, -1, 1, -70, 75, -22, 1, 1, -264, 406, -200, 33, -1, 1, -1034, 2085, -1470, 430, -48, 1, 1, -4108, 10296, -9600, 4116, -816, 64, -1, 1, -16398, 49231, -57574, 33135, -9786, 1410, -84, 1, 1, -65552, 229482 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix.  The zeros of p(n) are positive, and they interlace the zeros of p(n+1).  See A202605 for a guide to related sequences. REFERENCES (For references regarding interlacing roots, see A202605.) LINKS EXAMPLE Top of the array: 1...-1 1...-6.....1 1...-20....12....-1 1...-70....75....-22....1 1...-264...406...-200...33...-1 MATHEMATICA t = {1, 2}; t1 = Flatten[{t, t, t, t, t, t, t, t, t, t}]; f[k_] := t1[[k]]; U[n_] :=   NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[    Table[f[k], {k, 1, n}]]; L[n_] := Transpose[U[n]]; p[n_] := CharacteristicPolynomial[L[n].U[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%]  (* A203954 *) TableForm[Table[c[n], {n, 1, 10}]] CROSSREFS Cf. A203953, A202605. Sequence in context: A318408 A146957 A146988 * A060972 A144066 A296827 Adjacent sequences:  A203951 A203952 A203953 * A203955 A203956 A203957 KEYWORD tabl,sign AUTHOR Clark Kimberling, Jan 08 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 06:32 EST 2021. Contains 340434 sequences. (Running on oeis4.)