login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A203949 Symmetric matrix based on (1,1,0,1,1,0,1,1,0,...), by antidiagonals. 4
1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 1, 2, 0, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 0, 2, 1, 1, 4, 1, 1, 2, 0, 1, 1, 1, 3, 2, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 4, 2, 2, 2, 1, 1, 0, 2, 1, 1, 4, 2, 2, 4, 1, 1, 2, 0, 1, 1, 1, 3, 2, 2, 5, 2, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 4, 3, 3 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Let s be the periodic sequence (1,1,0,1,1,0,...)  and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s.  Let T' be the transpose of T.  Then A203949 represents the matrix product M=T'*T.  M is the self-fusion matrix of s, as defined at A193722.  See A203950 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

Northwest corner:

1 1 0 1 1 0 1 1 0 1

1 2 1 1 2 1 1 2 1 1

0 1 2 1 1 2 1 1 2 1

1 1 1 3 2 1 3 2 1 3

1 2 1 2 4 2 2 4 2 2

0 1 2 1 2 4 2 2 4 2

1 1 1 3 2 2 5 3 2 5

MATHEMATICA

t = {1, 1, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t, t}];

s[k_] := t1[[k]];

U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[

   Table[s[k], {k, 1, 15}]];

L = Transpose[U]; M = L.U; TableForm[M] (* A203949 *)

m[i_, j_] := M[[i]][[j]];

Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]

CROSSREFS

Cf. A203950, A202453.

Sequence in context: A171905 A262257 A144474 * A070200 A025914 A025916

Adjacent sequences:  A203946 A203947 A203948 * A203950 A203951 A203952

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Jan 08 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 19:05 EST 2016. Contains 278948 sequences.