OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..955
FORMULA
G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) = exp(Sum_{n>=1} Lucas(n)^6 * x^n/n), which is the g.f. of A203806.
a(n) ~ phi^(5*n) / n, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 02 2017
EXAMPLE
G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^121 * (1-4*x^3-x^6)^341 * (1-7*x^4+x^8)^4141 * (1-11*x^5-x^10)^32210 * (1-18*x^6+x^12)^314717 * ... * (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) * ...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^6 * x^n/n ) = g.f. of A203806:
F(x) = 1 + x + 365*x^2 + 1730*x^3 + 97390*x^4 + 948562*x^5 + ...
where
log(F(x)) = x + 3^6*x^2/2 + 4^6*x^3/3 + 7^6*x^4/4 + 11^6*x^5/5 + 18^6*x^6/6 + 29^6*x^7/7 + 47^6*x^8/8 + ... + Lucas(n)^6*x^n/n + ...
MATHEMATICA
a[n_] := DivisorSum[n, MoebiusMu[n/#]*LucasL[#]^5&]/n; Array[a, 20] (* Jean-François Alcover, Dec 07 2015 *)
PROG
(PARI) {a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^5)/n)}
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=local(F=exp(sum(m=1, n, Lucas(m)^6*x^m/m)+x*O(x^n))); if(n==1, 1, polcoeff(F*prod(k=1, n-1, (1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)), n)/Lucas(n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 07 2012
STATUS
approved