login
Expansion of e.g.f. exp( Integral -log(1-x) dx ).
5

%I #29 Sep 08 2022 08:46:01

%S 1,0,1,1,5,16,79,421,2673,19216,156021,1411873,14117773,154730720,

%T 1845959179,23826445501,330951133537,4923574598112,78123812086441,

%U 1317174439409409,23517962293307701,443340968936640496,8799729204814165223,183448995762912568885

%N Expansion of e.g.f. exp( Integral -log(1-x) dx ).

%C Row sums of A185164. - _Peter Bala_, Mar 14 2012

%H G. C. Greubel, <a href="/A203852/b203852.txt">Table of n, a(n) for n = 0..450</a>

%F E.g.f.: exp( Sum_{n>=2} x^n/(n*(n-1)) ).

%F E.g.f.: exp(x)*(1-x)^(1-x). - _Vaclav Kotesovec_, Dec 27 2013

%F a(n) ~ (n-1)! * (exp(1)/n + (2*log(n)+2*gamma)/n^2), where gamma is the Euler-Mascheroni constant (A001620). - _Vaclav Kotesovec_, Dec 27 2013

%F a(n) = sum(i=1..n-1, binomial(n-1,i)*(i-1)!*a(n-i-1),i,1,n-1), a(0)=1. - _Vladimir Kruchinin_, Feb 23 2015

%e E.g.f.: A(x) = 1 + x^2/2! + x^3/3! + 5*x^4/4! + 16*x^5/5! + 79*x^6/6! +...

%e where: log(A(x)) = x^2/2 + x^3/6 + x^4/12 + x^5/20 + x^6/30 + x^7/42 +...

%t CoefficientList[Series[Exp[x]*(1-x)^(1-x), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Dec 27 2013 *)

%o (PARI) {a(n)=n!*polcoeff(exp(-intformal(log(1-x +x*O(x^n)))), n)}

%o (PARI) x='x+O('x^30); Vec(serlaplace(exp(x)*(1-x)^(1-x))) \\ _G. C. Greubel_, Jul 17 2018

%o (Maxima)

%o a(n):=if n=0 then 1 else sum(binomial(n-1,i)*(i-1)!*a(n-i-1),i,1,n-1); /* _Vladimir Kruchinin_, Feb 23 2015 */

%o (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x)*(1-x)^(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Jul 17 2018

%Y Cf. A185164.

%K nonn

%O 0,5

%A _Paul D. Hanna_, Jan 29 2012