%I #14 Dec 26 2017 03:15:23
%S 1,1,9842,97223,58608265,1390114224,296390076414,12122505505998,
%T 1486321234837932,84428445979241330,7833461016478812734,
%U 528228569507280147664,43275470600883540869733,3148637876123977595284117,245565185017744596492591850
%N G.f.: exp( Sum_{n>=1} A000204(n)^9 * x^n/n ) where A000204 is the Lucas numbers.
%C More generally, exp(Sum_{k>=1} A000204(k)^(2*n+1) * x^k/k) = Product_{k=0..n} 1/(1 - (-1)^(n-k)*A000204(2*k+1)*x - x^2)^binomial(2*n+1,n-k).
%H G. C. Greubel, <a href="/A203809/b203809.txt">Table of n, a(n) for n = 0..530</a>
%F G.f.: 1/( (1-x-x^2)^126 * (1+4*x-x^2)^84 * (1-11*x-x^2)^36 * (1+29*x-x^2)^9 * (1-76*x-x^2) ).
%F G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A203859(n) where A203859(n) = (1/n)*Sum_{d|n} moebius(n/d)*Lucas(d)^8.
%e G.f.: A(x) = 1 + x + 9842*x^2 + 97223*x^3 + 58608265*x^4 + 1390114224*x^5 + ...
%e where
%e log(A(x)) = x + 3^9*x^2/2 + 4^9*x^3/3 + 7^9*x^4/4 + 11^9*x^5/5 + 18^9*x^6/6 + 29^9*x^7/7 + 47^9*x^8/8 + ... + Lucas(n)^9*x^n/n + ...
%t CoefficientList[Series[1/((1 - x - x^2)^126*(1 + 4*x - x^2)^84*(1 - 11*x - x^2)^36*(1 + 29*x - x^2)^9*(1 - 76*x - x^2)), {x, 0, 50}], x] (* _G. C. Greubel_, Dec 25 2017 *)
%o (PARI) /* Subroutine used in PARI programs below: */
%o {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
%o (PARI) {a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^9*x^k/k)+x*O(x^n)), n)}
%o (PARI) {a(n,m=4)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}
%Y Cf. A002571, A203803, A203804, A203805, A203806, A203807, A203808.
%Y Cf. A203859, A203800.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Jan 06 2012