login
A203676
v(n+1)/v(n), where v=A203675.
2
13, 4453, 9674704, 75224946901, 1545474559060224, 69549952010359093897, 6036862150681054978834432, 921916957672242760231518256521, 231086778644984585535258936647680000
OFFSET
1,1
COMMENTS
See A093883 for a discussion and guide to related sequences.
FORMULA
a(n) ~ (2 + sqrt(3))^(sqrt(3)*(n+1)) * exp(Pi*(n+1)/2 - 4*n) * n^(4*n). - Vaclav Kotesovec, Nov 21 2023
MATHEMATICA
f[j_] := j^2; z = 12;
u[n_] := Product[f[j]^2 - f[j] f[k] + f[k]^2,
{j, 1, k - 1}]
v[n_] := Product[u[n], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203675 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203676 *)
Table[Product[k^4 - k^2*(n+1)^2 + (n+1)^4, {k, 1, n}], {n, 1, 12}] (* Vaclav Kotesovec, Nov 21 2023 *)
CROSSREFS
Sequence in context: A174310 A362659 A057842 * A023345 A249941 A006541
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 04 2012
STATUS
approved